- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0003000003000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Jain, Pranav (6)
-
Shashaani, Sara (4)
-
Byon, Eunshin (2)
-
Ferguson, Zachary (2)
-
Panozzo, Daniele (2)
-
Schneider, Teseo (2)
-
Abramowitch, Steven (1)
-
Byon, Eunshin. (1)
-
Erleben, Kenny (1)
-
Gholamalizadeh, Torkan (1)
-
Martin, Liam (1)
-
Moshfeghifar, Faezeh (1)
-
Zorin, Denis (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jain, Pranav; Shashaani, Sara (, IEEE)
-
Jain, Pranav; Shashaani, Sara; Byon, Eunshin (, Applied Energy)
-
Martin, Liam; Jain, Pranav; Ferguson, Zachary; Gholamalizadeh, Torkan; Moshfeghifar, Faezeh; Erleben, Kenny; Panozzo, Daniele; Abramowitch, Steven; Schneider, Teseo (, Computer Methods and Programs in Biomedicine)
-
Ferguson, Zachary; Jain, Pranav; Zorin, Denis; Schneider, Teseo; Panozzo, Daniele (, SIGGRAPH Conference Track)
-
Jain, Pranav; Shashaani, Sara; Byon, Eunshin. (, IIE Annual Conference. Proceedings)The calibration of the wake effect in wind turbines is computationally expensive and with high risk due to noise in the data. Wake represents the energy loss in downstream turbines, and characterizing it is essential to design wind farm layout and control turbines for maximum power generation. With big data, calibrating the wake parameters is a derivative-free optimization that can be computationally expensive. But with stochastic optimization combined with variance reduction, we can reach robust solutions by harnessing the uncertainty through two sampling mechanisms: the sample size and the sample choices. We do the former by generating a varying number of samples and the latter using the variance-reduced sampling methods.more » « less
An official website of the United States government

Full Text Available